
Chapter 4

BETATRON TUNE SHIFTS

4.1 Static Transverse Forces

The vertical motion of a beam particle inside a beam obeys the equation of motion

dpy
dt

= Fext(y) + Fbeam(y; �y) ; (4.1)

where py = mdy=dt is the vertical momentum of the particle and m its rest mass�.

Since we want to study the motion of small vertical displacement y, the Lorentz factor

 can therefore taken out of the derivative. Here, Fext(y) is the force due to the magnets

outside the vacuum chamber and gives rise to betatron oscillations, while Fbeam(y; �y) is

the force coming from the electromagnetic �elds of the beam on the particle at y and

the beam vertical center at �y. For example, with quadrupole focusing,

Fext(y) =
B0
y

B�
y ; (4.2)

where B0
y = dBy=dx is the gradient of the quadrupole magnetic ux density and B�

the rigidity of the beam. For the sake of simplicity, this focusing can be assumed to be

uniform along the accelerator ring; we can therefore make the replacement

hFext(y)i �! �(�V0 !0)
2y ; (4.3)

�Here, we concentrate on the transverse motion of the beam particles and ignore their momentum

o�sets and synchrotron motion. Thus, the revolution period of every particle at every turn is the same.

This allows us to use the real time t as the independent variable.
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where �V0 is the number of vertical oscillations the particle makes in a turn or what we

usually call the bare vertical betatron tune, while !0=(2�) is the revolution frequency.

Notice that the average of the external force is proportional to the impulse in one accel-

erator turn. Now the transverse equation of motion becomes

d2y

ds2
+

(�V0 )
2

R2
y =

hFbeam(y; �y)i
mv2

; (4.4)

where R is the average radius of the ring. In above, the rigid-bunch and impulse ap-

proximations have been applied to the Fbeam, and we have replaced d=dt by vd=ds with

v = �c being the velocity of the beam, c the velocity of light, and s the distance mea-

sured along the longitudinal path in the ring. In this chapter, we are going to study the

steady-state e�ects of the transverse wake potential on the beam. Therefore, there is no

explicit time dependency in hFbeami. As will be shown below, the steady-state e�ects of

the wake potential contribute to betatron tune shifts, while the time-dependent e�ects

may excite instabilities.

Since we are interested only in small amount of motion in the vertical direction, the

beam force can be Taylor expanded to obtain

d2y

ds2
+

(�V0 )
2

R2
y =

1

mv2

 
@hFbeami

@y

����
�y=0

y +
@hFbeami

@�y

����
y=0

�y

!
; (4.5)

The �rst term on the right side is proportional to the vertical displacement of the witness

particle; it therefore constitutes a shift of the vertical betatron tune �V0 to become �Vincoh.

When the shift is smally, we write (�Vincoh)
2 = (�V0 )

2 + 2�V0 ��
V

incoh with

��Vincoh = � R2

2�V0 mv2
@hFbeami

@y

����
�y=0

: (4.6)

Since this shift a�ects an individual beam particle, ��Vincoh is called the vertical inco-

herent tune shift. Thus, the incoherent tune shift can be computed by setting �y = 0 or

without any displacement of the center of the whole beam.

Let us come back to Eq. (4.5), the transverse equation of motion. We can write one

such equation for each beam particle. Perform an average by adding up these equations

and dividing by the total number of beam particles. The result is

d2�y

ds2
+

(�V0 )
2

R2
�y =

1

mv2

 
@hFbeami

@y

����
�y=0

�y +
@hFbeami

@�y

����
y=0

�y

!
: (4.7)

yWhen the tune shift is large ��V
incoh

on the left side of Eq. (4.6) should be replaced by

� (�V )
2

incoh
=(2�V0 ). The same applies to Eqs. (4.8), (4.13), (4.16), (4.19), etc.
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This equation describes the vertical motion of the center of the beam, or the coherent

motion of the beam, which is just a simple harmonic motion. The vertical betatron tune

of the center of the beam, or the coherent vertical betatron tune of the beam, is now

�Vcoh = �V0 +��Vcoh. When the perturbation is small, the coherent tune shift becomes

��Vcoh = � R2

2�V0 mv2

 
@hFbeami

@y

����
�y=0

+
@hFbeami

@�y

����
y=0

!
: (4.8)

Because we keep only the linear terms of the Taylor expansion in Eq. (4.5), we have

included only the dipole parts of the wake force. As a result, these tune shifts should be

called dipole coherent tune shift and dipole incoherent tune shift.

Let us assume here that the vacuum chamber is completely smooth and in�nitely

conducting. Then the force on a beam particle from the beam comes from only two

sources: (1) electromagnetic interaction of the beam particle with all other beam par-

ticles in the beam, which we call self-force, (2) reection of electromagnetic �elds from

the walls of the vacuum chamber, which we call image forces.

4.1.1 Electric Image Forces

The image forces certainly depends on the geometry of the vacuum chamber. Let us

consider the simple case when the vacuum chamber consists of two in�nite horizontal

plates at location y = �h as illustrated in Fig. 4.1. The beam of say positive charges

is displaced by �y1 vertically and the witness particle is at y1. We wish to consider

the electric force on the witness particle coming from reection by the top and bottom

walls of the vacuum chamber. In order that the horizontal electric �eld at the top

wall vanishes, there must be an image of the beam with negative charges at position

y = 2h � �y1 or at a distance 2h � �y1 � y1 from the witness particle. In order that the

horizontal electric �eld at the bottom wall vanishes, this image will have another image

of positive charges from the bottom wall at y = �(4h � �y1) or 4h � �y1 + y1 from the

witness particle. This secondary image will have a third image of negative charges from

the top wall, a 4th image of positive charges from the bottom wall, etc.

Similarly, the beam has an image of negative charges �rst from the bottom wall at

y = �(2h+ �y1) or 2h+ �y1 + y1 from the witness particle. This image will form another

image of positive charges through the top wall with positive charges at y = 4h + �y1 or

4h+ �y1�y1 from the witness particle, etc. Summing up, the vertical electric �eld acting
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Figure 4.1: Illustration showing the electric forces from the images of a beam, o�

centered vertically by �y1, acting on a witness particle at location y1 inside the beam

between two in�nite horizontal conducting parallel plates separated vertically by

distance 2h.

on the witness particle is, according to Gauss's law in the cylindrical coordinates,

Ey =
e�

2��0

�
+

1

2h��y1�y1 �
1

2h+�y1+y1
+

1

6h��y1�y1 �
1

6h+�y1+y1
+ � � �

� 1

4h+�y1�y1 +
1

4h��y1+y1
� 1

8h��y1�y1 +
1

8h+�y1+y1
+ � � �

�
; (4.9)

where � is the linear particle density per unit length along the ring. Every two adjacent

terms are grouped together giving

Ey =
e�

2��0

�
+

2(�y1 + y1)

(2h)2 � (�y1 + y1)2
+

2(�y1 + y1)

(6h)2 � (�y1 + y1)2
+ � � �

+
2(�y1 � y1)

(4h)2 � (�y1 � y1)2
+

2(�y1 � y1)

(8h)2 � (�y1 � y1)2
+ � � �

�
: (4.10)
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Since we consider only small vertical motion, only terms linear in �y1+ y1 and �y1� y1 are

kept leading to

Ey =
e�

��0h2

�
(�y1 + y1)

�
1

22
+

1

62
+

1

102
+ � � �

�
+ (�y1 � y1)

�
1

42
+

1

82
+

1

122
+ � � �

��

=
e�

��0h2

�
(�y1 + y1)

�2

32
+ (�y1 � y1)

�2

96

�
: (4.11)

In the literature, there is a standard way to write these image contributions following

the work of Laslett [1, 2, 3]:

Ey =
e�

��0

�V1
h2
y1 and

e�

��0

�V1
h2

�y1 ; (4.12)

where �V1 and �V1 are called, respectively, the incoherent and coherent electric image

coeÆcients. For the situation of two parallel plates, we have �V1 = �2=48 and �V1 = �2=16.

Attention should be paid that in deriving the coherent image coeÆcient, y1 has been

replaced by �y1 in Eq. (4.9) or (4.10) or (4.11). According to Eqs. (4.6) and (4.8), the

coherent and incoherent vertical tune shifts due to electric images are:

��Vincoh = � Nr0R

��2�V0

�V1
h2

and ��Vcoh = � Nr0R

��2�V0

�V1
h2

; (4.13)

where we have replaced the linear particle density by � = N=(2�R) with N being the

total number of particles in the beam, and introduced the classical radius of the particle

r0 = e2=(4��0mc2).

Notice that there is a negative sign in front of each of the tune shift expressions

in Eq. (4.13). This implies that a positive image coeÆcient will contribute a downward

shifting to the betatron tune.

4.1.2 Magnetic Image Forces

Unlike the electric �eld that cannot penetrate the metallic vacuum chamber at any

frequency, the e�ect of the magnetic �eld is more complex. The magnet �eld has an

ac component and a dc component. The ac component has its component parallel to

the wall of the vacuum chamber converted into eddy current. In other words, the ac

magnetic �eld cannot penetrate the wall of the vacuum chamber. There the boundary

condition is B? = 0, or the magnetic ux density B is parallel to the wall of the vacuum
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Figure 4.2: Illustration showing the magnetic forces from the images of a beam, o�

centered vertically by �y1, acting on a witness current at location y1 inside the beam

between two in�nite horizontal conducting parallel plates separated vertically by

distance 2h. The normal components of the non-penetrating magnetic �elds vanish

at the plates. The beam or image currents owing into or out of the paper are

labeled \in" or \out".

chamber. To accomplish this, the �rst image from a boundary wall gives an image

current that ows in the opposite direction to that the beam. The total force from these

magnetic images acting on the witness charge current at position y1 is illustrated in

Fig. 4.2 and is expressed as

Fmag
y

e
= �e�0�v

2

2�

�
+

1

2h��y1�y1 �
1

2h+�y1+y1
+

1

6h��y1�y1 �
1

6h+�y1+y1
+ � � �

� 1

4h+�y1�y1 +
1

4h��y1+y1
� 1

8h��y1�y1 +
1

8h+�y1+y1
+ � � �

�
:

(4.14)
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There is the factor v2 outside the square brackets on the right side. One v comes

from the source beam current and the other v comes from the Lorentz force. It is

interesting to see that the factor outside the square brackets is equal to �e��2=(2��0).

Thus, the force due to the ac magnetic images are equal to the force due to the electric

images multiplied by the factor ��2. This leads to

Fmag
y

e
= � e��2

2��0h2

�
(�y1 + y1)

�2

32
+ (�y1 � y1)

�2

96

�
: (4.15)

Following Eq. (4.13), tune shifts due to ac magnetic images can be expressed as terms

of the former electric image coeÆcients �V1 and �V1 :

��Vincoh =
Nr0R

��V0

�V1
h2

and ��Vcoh =
Nr0R

��V0

�V1
h2

: (4.16)

There is always a dc part of the magnetic �eld that can penetrate the wall of the

beam pipe and lands on the pole faces of the magnet as if the vacuum chamber were

not there. The boundary condition on the magnet pole faces is now B? continuous and

Bk = 0. In order to accommodate this, all the image currents must ow in exactly the

same direction of the source beam, as illustrated in Fig. 4.3. The force on the witness

particle is now

Fmag
y

e
=

e�0�v
2

2�

�
+

1

2g��y1�y1 �
1

2g+�y1+y1
+

1

6g��y1�y1 �
1

6g+�y1+y1
+ � � �

+
1

4g+�y1�y1 �
1

4g��y1+y1
+

1

8g��y1�y1 �
1

8g+�y1+y1
+ � � �

�
;

(4.17)

where the magnetic pole faces are at y = �g or the magnets have a vertical gap 2g

between the poles faces. It is important to note the slight di�erence between Eqs. (4.14)

and (4.17). Here we obtain

Fmag
y

e
= +

e��2

2��0g2

�
(�y1 + y1)

�2

32
� (�y1 � y1)

�2

96

�
; (4.18)

as compared to Eq. (4.15). Following Laslett, we write the tune shifts due to dc magnetic

images as

��Vincoh = �Nr0R

��V0

�V2
g2

and ��Vcoh = �Nr0R

��V0

�V2
g2

; (4.19)
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Figure 4.3: Illustration showing the magnetic forces from the images of a beam, o�

centered vertically by �y1, acting on a witness current at location y1 inside the beam

between two in�nite horizontal parallel pole faces separated vertically by distance

2g. The parallel components of the penetrating magnetic �elds vanish at the pole

faces. Here, the beam and all image currents ow into the paper.

where �V2 and �V2 are called, respectively, the vertical incoherent and coherent dcmagnetic

image coeÆcients. For the special case of two parallel plates, they assume the values

�V2 = �2=24 and �V2 = �2=16.

There is also a set of horizontal image coeÆcients: �H1 , �
H

2 , �
H

1 , and �H2 . Because the

image forces acting on the witness particle come directly from the individual images, the

electric �eld and magnetic ux density from the images at the location of the witness

particle satisfy source-free Gauss's law, or ~r� ~E = 0 and ~r� ~B = 0. We therefore always

have

�H1 = ��V1 and �H2 = ��V2 : (4.20)

On the other hand, there is no de�nite relationship between the horizontal and vertical
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coherent electric image coeÆcients. In the special case of two parallel plates, it is obvious

that �H1 = 0 and �H2 = 0, which is the result of translational invariance. For a beam

pipe with circular cross section or square cross section, �H1 = 0 and �H2 = 0 because of

symmetry between the horizontal and vertical.

It is important to point out that electric and magnetic image coeÆcients are always

de�ned with reference to the square of the half vertical vacuum chamber h or the square

of the half vertical magnetic pole gap g, independent of whether we are talking about

the vertical or horizontal tune shifts. For the example of a rectangular beam pipe of

half height h and half width w, only h2 will enter into the denominators but never w2,

such as in Eqs. (4.13), (4.16), or (4.19). In the same way, for an elliptical beam pipe

of vertical radius b and horizontal radius a, the image coeÆcients will be de�ned with

reference to h = b but not a. It is because of such a dedicated reference that the relations

in Eq. (4.20) hold.

4.1.3 Space charge Self-Forces

The interaction of a beam particle with other beam particles in the beam depends on

the transverse distribution of the beam. Let us �rst consider a uniformly distributed

coasting beam of circular cross section and radius a. The witness particle at y = y1 � a

sees, in the y-direction, an electric forcez

F elect
y =

e2�

2��0a2
(y1 � �y1) ; (4.21)

and a magnetic force

Fmag
y = �e2�0�v

2

2�a2
(y1 � �y1) = � e2��2

2��0a2
(y1 � �y1) ; (4.22)

or a total force of

Fy =
e2�

2��02a2
(y1 � �y1) : (4.23)

where �y1 is vertical position of the center of the beam. This self-force is a space charge

force. According to Eq. (4.6), this self-force leads to a space charge tune shift of

��V;Hspch incoh = � Nr0R

2�3�2a2�V;H0

: (4.24)

zThe vertical electric and magnetic forces in Eqs. (4.21) and (4.22) are true for any particle at a

vertical distance y = y1 � a above the center of the beam and are independent of the particle horizontal

position.



4-10 4. BETATRON TUNE SHIFTS

It is clear from Eq. (4.23) that the coherent space charge tune shifts in both transverse

directions are zero. This is understandable, because the center of the beam does not see

its own space charge force. We can also de�ne the self-�eld or space charge coeÆcients

in the vertical and horizontal directions, �V;Hspch =
1
2
, such that

��V;Hspch incoh = � Nr0R

�3�2�V;H0

�V;Hspch

a2
: (4.25)

The space charge coeÆcients take care of the transverse shape of the beam and how the

beam particles are distributed.

Now consider a beam with uniform transverse distribution but elliptical cross section

with vertical and horizontal radii aV and aH. In de�ning the space charge coeÆcients,

we follow the same convention of the Laslett image coeÆcients that the a2 in the de-

nominator of Eq. (4.25) is always a2
V
, independent of whether we are referring to the

vertical or horizontal space charge tune shift. The vertical and horizontal space charge

coeÆcients are then (Exercise 4.3)

�Vspch =
aV

aV + aH
and �Hspch =

a2
V

aH(aV + aH)
: (4.26)

These coeÆcients become 1
2
when aV = aH as expected.

We can also express the incoherent space charge tune shift in term of the normalized

emittance of the beam

�V;H
N

= �
a2
V;H

h�V;Hi ; (4.27)

where h�V;Hi is the average vertical/horizontal betatron function of the ring, which is

roughly equal to R=�V;H0 . Then, we have

��V;Hspch incoh = � Nr0

�2�
p
�V;HN

�p
�V;HN +

p
�H;V

N h�H;V i=h�V;Hi
�
B

: (4.28)

In the above, we have also introduced the single-bucket bunching factor B to take care

of the fact the the beam may be longitudinally bunched. The single-bucket bunching

factor is de�ned as

B =
Iav
Ipk

; (4.29)

where Iav and Ipk are, respectively, the current of a bunch averaged over a single rf

bucket and its peak current, or the average current to the peak current assuming that

all the buckets are �lled.
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We can also consider a beam with cylindrical cross section but with transverse

bi-Gaussian distribution,

f(x; y) =
�

2��2
e�(x

2+y2)=(2�2) ; (4.30)

where � is the rms transverse spread of the beam and � = N=(2�R) is the linear density.

A particle at y = y1 vertically above the center of the beam sees an electric force in the

y direction,

F elect
y =

e2

2��0y1

�

�2

Z y1

0

e�r
2=(2�2)rdr =

e2�

2��0y1

h
1� e�y

2

1
=(2�2)

i
: (4.31)

For small o�set, y1 � �, we have

F elect
y =

e2�

4��0�2
y1 : (4.32)

The magnetic force is the same but multiplied by ��2. The incoherent space charge

tune shift is therefore

��V;Hspch incoh = � Nr0R

4�3�2�2�V;H0

: (4.33)

Here, we can de�ne the 95% normalized transverse emittance �V;HN95 of the beam which

encloses 95% of the beam particles. This corresponds to a radius r95 given by

1

2��2

Z r95

0

e�r
2=(2�2)2�rdr = 95% ; (4.34)

which gives r95 �
p
6�. Thus

�V:H
N95 = �

r295
h�V;Hi � �

6�2

h�V;Hi : (4.35)

The space charge tune shift becomes

��V;Hspch incoh = � 3Nr0
2�2��V;H

N95B
: (4.36)

In general, if the beam has an elliptical cross section with vertical/horizontal rms

beam size �V;H , the space charge coeÆcients for a particular beam particle can be rep-

resented by

�Vspch =
f�V

�V + �H
and �Hspch =

f�2
V

�H(�V + �H)
; (4.37)
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where the form factor f comes about because each particle in a transverse slice of the

beam receives di�erent tune shifts. For the bi-Gaussian distribution, if we consider only

the particles at the center of the beam where the tune shifts are largest, f = 3. Thus

the tune shift is three times as large as the tune shift for a uniform distribution in

Eq. (4.28). This is because particles are mostly concentrated near the bunch center in a

bi-Gaussian distribution and the linear particle density at the bunch center is therefore

much larger. However, the tune shift for those particles with transverse o�sets will be

much smaller. If we make a rough model by assuming those particles within one sigma

of the beam core to have the maximum tune shift while those outside do not experience

any space charge force, we obtain some sort of average for the particles in the cross

sectional slice, f = 3
�
1 � e�1=2) = 1:180, which is only slightly larger than that for a

uniformly distributed beam.

It is important to point out that what we really care for is the spread in space charge

tune shift among the particles inside the beam, but not so much the maximum space

charge tune shift, because the latter can be corrected by changing the bare tune of the

machine. For a distribution of �nite extent, the space charge tune spread is always less

than the maximum space charge tune spread, which occurs at the center of the beam for

most distributions. For a transverse bi-Gaussian distribution that extend to in�nity, the

space charge tune shift of a particle in�nitely far away from the beam axis is zero, and

therefore the space charge tune spread is equal to the maximum space charge tune shift.

However, these particles are excluded from a realistic distribution which has a �nite

extent and this makes the space charge tune spread less than the maximum tune shift.

When the bi-Gaussian distribution is truncated more and more (by including only those

particles closer and closer to the beam center), the space charge tune spread becomes

smaller and smaller while the maximum space charge tune shift remains unchanged. For

a round beam, with bi-Gaussian distribution, �r = �H = �V and maximum excursion r,

the form factor f(r=�r) in Eq. (4.37) for betatron amplitude r is found to be

f(r=�r)

3
=

8�2
r

�r2

Z �=2

0

�
1� exp

�
� r2

2�2
r

sin2 �

��
d� =

1X
n=1

(2n)!

2(n!)3

�
� r2

8�2
r

�n�1

; (4.38)

which is depicted in Fig. 4.4. Consider a beam with a bi-Gaussian distribution truncated

at 2:5�r, we see that the particles at the edge of the beam have a space charge tune shift

� 40% of the maximum space charge tune shift. Thus the space charge tune spread

is equal to � 60% the maximum space charge tune shift. On the other hand, for the

uniform transverse distribution, the space charge tune shift is amplitude independent

and the spread is zero exactly.
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Figure 4.4: Plot of space charge tune shift of a particle with betatron amplitude r

as a fraction of the maximum space charge tune shift of a bi-Gaussian distributed

round beam with rms beam size �r.

We now understand that the space charge self-force of a bunch acting on the indi-

vidual beam particles constitutes vertical and horizontal tune spreads. Usually, people

say that large incoherent space charge tune spreads will encompass a lot of parametric

resonances in the �V -�H tune space and lead to instability. For this reason, the beam

intensities in low-energy synchrotrons are limited by the horizontal and vertical space

charge tune spreads. The common rule of thumb is that incoherent self-�eld tune spreads

should not exceed � 0:40. At the same time, the widths of important stopbands should

also be minimized by corrections made to the ring lattice. However, these self-�eld tune

spreads at injection have never been well-measured beam parameters. It is diÆcult to

measure because low-energy rings are usually ramped very rapidly. Thus, the self-�eld

tune spreads diminish very quickly as the energy of the beam increases. Most low-energy

rings that have large space charge tune spreads are ramped by resonators. To measure

the self-�eld tune spreads, we must disconnect the magnet winding currents from the

resonator so as to provide a longer interval for which the beam energy does not change.
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This is not always possible, because the beam will generally become unstable if it is

allowed to stay at such low energy for a long time. If the condition is available, however,

the tune spreads can be measured by a technique called rf knockout. A narrow band rf

signal is used to excite the beam. Those particles with the correct tune resonate with the

driving signal and are lost. Since only a small fraction of the beam resonates, this res-

onating frequency of rf signal corresponds to the incoherent tune of the beam. Another

way is to perform a Schottky scan which shows the tunes of individual particles. The

coherent tune shifts can be measured by the same rf knockout method. If the exciting

rf signal hits a coherent tune, the whole beam will be lost.

As we shall see in Chapter 5 that it is the coherent rather than the incoherent tune

shifts that determine the instability of a beam. In fact, this is quite reasonable. When

the bunch is oscillating at an integer coherent tune, we have the usual integer resonance.

This leads to an instability because all particles are performing betatron oscillations

with a tune component that is at an integer. The whole beam will become unstable.

Although the dipole coherent space charge tune shift vanishes because the beam moves

rigidly, there are other coherent motion of the beam, for example when the beam size

oscillates without the beam center being moved. Some of these modes will be derived

after introducing the envelope equation.

One may argue that if the incoherent tune spread covers an integer or half-integer

resonance, a small amount of particles are hitting the resonance, and this small amount

of the beam will be unstable. It will be shown in Chapter 5 that even this statement is

incorrect, because the space charge self-force vanishes when the incoherent motion of the

beam particles hit a resonance. Then why should we study the incoherent space charge

tune shift if the resonances have nothing to do with incoherent motion? The answer is:

the higher-multipole coherent space charge tune shifts depend on the incoherent space

charge tune shift. Thus, if the incoherent space charge tune shift can be controlled,

say by blowing up the transverse beam size, the higher-multipole coherent space charge

tune shifts will become smaller also. In this way, a higher intensity beam will be possible

before hitting the parametric resonances.
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4.2 Tune Shift for a Beam

In this section, we want to derive the general expressions of incoherent and coherent

tune shifts for a beam, unbunched or bunched, in terms of Laslett image coeÆcients

and the self-force coeÆcients. These expressions are complicated by the fact that the

magnetic �eld may or may not penetrate the vacuum chamber.

4.2.1 Image Formation

Let us recall how images of the beam are formed, in the walls of the vacuum chamber? or

in the magnetic pole faces? For the electric �eld, because the parallel component vanishes

on the walls of the vacuum chamber which we assume to be in�nitely conducting, images

will always be formed in the walls of the vacuum chamber. We therefore say that electric

�eld is always non-penetrating. In this discussion, penetrating or non-penetrating always

implies penetrating or non-penetrating the vacuum chamber.

The magnetic �eld is quite di�erent. All low-frequency magnetic �eld will penetrate

the vacuum chamber and form images in the magnet pole faces. If no magnet pole faces

are present, we assume that magnetic �eld will go to in�nity and will no longer a�ect the

test particle. All high-frequency magnetic �eld will not penetrate the vacuum chamber

and form images in the walls of the vacuum chamber.

Before proceeding further, there is an important rule that is worth mentioning. For

images in the wall of the vacuum chamber, we use the electric image coeÆcient �V;H1 or

�V;H1 , depending on whether it is incoherent or coherent. The electric image coeÆcients

are used not only for electric images but also for magnetic images. The only di�erence

is that, for magnetic images, we use ��2�V;H1 or ��2�V;H1 . This is because the actual

contribution of magnetic �eld from the images in the walls of the vacuum chamber is

exactly the same as the electric �eld. The factor �2 comes about because we need a

factor of � from the magnetic part of the Lorentz force and another factor of � from

the source which is the beam current. The negative sign comes about because the

magnetic force on a beam is always in opposite direction to the electric force. As for

images formed in the magnet pole faces, they can only be magnetic images, because

electric �eld cannot penetrate the vacuum chamber. Their contributions will be �2�V;H2

or �2�V;H2 , respectively, when the tune shifts are incoherent or coherent. Here we have

the same factor of �2. However, there is no negative sign, which is just a convention.
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In other words, one may consider the negative sign to have been absorbed into the

de�nition of �2�V;H2 or �2�V;H2 . We can also say that electric image coeÆcients are for

images in the walls of the vacuum chamber independent of whether the e�ect is electric or

magnetic, while magnetic image coeÆcients are for images in the magnet pole faces. All

these considerations are summarized in Table 4.1, where we also separate the coherent

tune shift in Eq. (4.8) into two parts: the dc part @hFbeami=@yj�y=0 when the beam is

stationary and the ac part @hFbeami=@�yjy=0 when the beam is oscillating.

Table 4.1: Relation of each component of the beam force to the image coeÆcients

with images formed in the vacuum chamber or magnetic pole faces.

Images in Images in

Beam force components vacuum chamber pole faces Comments

electric magnetic magnetic

@hFbeami
@y

����
�y=0

�V;H1

h2
��2 �

V;H

1

h2
�2 �

V;H

2

g2

incoherent
dc coherent

@hFbeami
@y

����
�y=0

+
@hFbeami

@�y

����
y=0

�V;H1

h2
��2 �

V;H

1

h2
�2 �

V;H

2

g2
coherent

@hFbeami
@y

����
y=0

��2 �
V;H

1 ��V;H1

h2
�2 �

V;H

2 ��V;H2

g2
ac coherent

4.2.2 Coasting Beams

Now we are ready to express the tune shifts in terms of image coeÆcients. First, let us

study the simpler case of a coasting beam, where the only ac magnetic �eld comes from

betatron oscillations. The frequency will be low when the betatron tune is close to an

integer and the magnetic �eld may be penetrating. On the other hand, the frequency

will be high when the betatron tune is close to a half integer and the magnetic �eld may

be non-penetrating. The incoherent tune shifts are:

��V;Hincoh = � Nr0R

��2�V;H0

�
�V;H1

h2
+ F�2 �

V;H

2

g2
+ (1� �2)

�V;Hspch

a2
V

�
: (4.39)

" " "
electric image magnetic image self-�eld, (1��2) gives

in vacuum chamber in magnet poles balance between ~E and ~H



4.2 Tune Shift for a Beam 4-17

Here, the �rst term comes from the electric images in the vacuum chamber since electric

�eld is always non-penetrating and therefore the incoherent electric image coeÆcient

�V;H1 =h2. The second term comes the magnetic images in the magnet pole faces and

therefore the incoherent magnetic image coeÆcient �V;H2 together with the factor �2

in front and g2 in the denominator. The factor F represents the fraction of the ring

circumference where the beam is sandwiched between magnetic pole faces. As stated

before, the incoherent beam force comes from the images of the beam center which is

not displaced or �y = 0. These images are not moving and the beam force is therefore

static or dc, and the magnetic �eld is therefore landing on the magnet pole faces. The

last term is just the space charge contribution, where the 1 denotes the electric part and

��2 the magnetic part.

For the coherent tune shifts of a coasting beam, if the magnetic �eld is penetrating,

we just have simply,

��V;Hcoh = � Nr0R

��2�V;H0

�
�V;H1

h2
+ F�2 �

V;H

2

g2

�
; (4.40)

" "
electric image magnetic image

in vacuum chamber in magnet poles

where all the magnetic �eld penetrates the vacuum chamber and forms images in the

magnet pole faces. Note that there is no space charge term because the center of the

beam does not see the self-force among beam particles.

When the magnetic �eld is non-penetrating, we have instead

��V;Hcoh = � Nr0R

��2�V;H0

�
�V;H1

h2
+ F�2 �

V;H

2

g2
� �2 �

V;H

1 ��V;H1

h2

�
: (4.41)

" " "
electric image magnetic image ac magnetic image

in vacuum chamber in magnet poles in vacuum chamber

To understand this expression, recall the magnetic part of beam force on the right side

of Eq. (4.5). The ac magnetic �eld comes from the betatron oscillation of the whole

beam and has its source from the second term on the right side only, since we require

a moving beam center or �y 6= 0. According to Table 4.1, the contribution is therefore

��2(�V;H1 � �V;H1 )=h2. The dc part of the coherent magnet beam force is the �rst term on

the right side of Eq. (4.5). Since this dc �eld produces images in the magnet pole faces,
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we have therefore the second term of Eq. (4.41). The �rst term comes from the electric

component of the coherent beam force. After re-arrangement, the coherent tune shift

with penetrating �elds reads

��V;Hcoh = � Nr0R

��2�V;H0

�
(1��2)�V;H1

h2
+ �2 �

V;H

1

h2
+ F�2 �

V;H

2

g2

�
: (4.42)

4.2.3 Bunched Beams

For bunched beam, we would like to compute the maximum tune shifts when the beam

current is at its local maximum. We therefore divide by the bunching factor B suitably

so that the bunch intensity will be properly enhanced. Notice that ac magnetic �eld now

comes from two sources: transverse betatron oscillation of the bunch and longitudinal or

axial bunching of the beam. Although both e�ects are ac, their frequencies are in general

very di�erent. The frequency of transverse betatron oscillation is (n��V;H0 )!0=(2�), where

n is the revolution harmonic closest to the tune. These frequencies are therefore only

fractions of the revolution frequency. On the other hand, the axial bunch frequency

is a h!0=(2�) with h the rf harmonic, which is often many times revolution frequency.

For this reason, it is reasonable to consider the ac magnetic �elds arising from axial

bunching always non-penetrating, while the ac magnetic �elds arising from betatron

oscillation sometimes non-penetrating and sometimes penetrating.

In the expressions below, we try also to include the e�ect of trapped particles that

carry charges of the opposite sign. Take a proton beam, for example, electrons can be

trapped, giving a neutralization coeÆcient �e, which is de�ned as the ratio of the total

number of trapped electrons to the total number of protons. (For antiproton beam,

the particles trapped are positively charged ions.) The trapped electrons will not travel

longitudinally. Therefore, they only a�ect the electric force but not the magnetic force.

In other words, for electric contributions, we replace 1 by (1� �e).

The incoherent tune shift for a bunched beam is expressed as

��V;Hincoh=�
Nr0R

��2�V;H0

�
1��e
B

�V;H1

h2
+ F�2 �

V;H

2

g2
� �2

�
1

B
� 1

�
�V;H1

h2
+ (1��e��2)

�V;Hspch

a2
V

�
:

(4.43)" " " "
electric image magnetic image ac magnetic image self-�eld

in vacuum chamber in magnet poles from axial bunching

The second term represents magnetic �elds of a stationary beam and its images and
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therefore the usual incoherent magnetic image coeÆcient �V;H2 , which describes dc mag-

netic �elds penetrating the vacuum chamber and landing at the magnet poles. Here,

there is no division by the bunching factor B, because we are talking about the dc �elds

coming from the average beam current.

The third term is for the ac magnetic �elds generated from axial bunching and a

division by B is therefore necessary. Since the ac magnetic �elds are non-penetrating,

their contribution is the same as that of the incoherent electric �eld and therefore the

factor ��2�V;H1 . We must remember that there is a dc part that lands on the magnet pole

faces which we have considered already and must not be included here again. For this

reason, we need to replace B�1 by B�1 � 1. The accuracy of this term can be inferred

by noticing its disappearance when we let B ! 1, or the bunched beam becomes totally

unbunched. After re-arrangement, this incoherent tune shift becomes

��V;Hincoh=�
Nr0R

��2�V;H0

��
1��e � �2

B
+ �2

�
�V;H1

h2
+ F�2 �

V;H

2

g2
+ (1��e��2)

�V;Hspch

a2
V

�
:

(4.44)

For coherent motion with penetrating magnetic �elds from betatron oscillation, we

have

��V;Hcoh =�
Nr0R

��2�V;H0

�
1��e
B

�V;H1

h2
+ F�2 �

V;H

2

g2
� �2

�
1

B
� 1

�
�V;H1

h2

�
: (4.45)

" " "
electric image magnetic image ac magnetic image

in vacuum chamber in magnet poles from axial bunching

where the third term is contributed by the magnetic �eld of bunching frequencies, which

cannot penetrate the vacuum chamber. The magnetic �elds divide into the dc part and

the ac part in exactly the same way as Eq. (4.43), the expression for incoherent tune

shift. Because we are talking about coherent tune shifts, the coeÆcients �V;H2 and �V;H1 are

replaced, respectively by �V;H2 and �V;H1 . After re-arrangement, the coherent tune shifts

with penetrating magnetic �elds from betatron oscillation becomes

��V;Hcoh =�
Nr0R

��2�V;H0

��
1��e��2

B
+ �2

�
�V;H1

h2
+ F�2 �

V;H

2

g2

�
: (4.46)

Finally, we come to ac magnetic �elds that are non-penetrating coming from both



4-20 4. BETATRON TUNE SHIFTS

axial bunching and betatron oscillation. The coherent tune shifts are

��V;Hcoh =�
Nr0R

��2�V;H0

�
1��e
B

�V;H1

h2
+ F�2 �

V;H

2

g2
� �2 �

V;H

1 ��V;H1

h2
� �2

�
1

B
� 1

�
�V;H1

h2

�
:

(4.47)
" " " "

electric image magnetic image ac magnetic image ac magnetic image
in vacuum chamber in magnet poles from transverse from axial bunching

motion

Here, the axial bunching parts are very exactly the same as in Eq. (4.45) because they

describe exactly the same ac magnetic �elds coming from axial bunching. As for the dc

magnetic �elds, the contribution in Eq. (4.45) comes from both terms of the beam force

on the right side of Eq. (4.5) and contributes the coeÆcient �V;H2 . Here the dc magnetic

�elds come from only the �rst term of the beam force and contribute �V;H1 instead, for

exactly the same reason as in Eq. (4.39). The part of the second term that comes from

betatron oscillation of the beam gives rise to the second last term of Eq. (4.47), for

exactly the same reason as in Eq. (4.39). After re-arrangement, this coherent tune shift

takes the form

��V;Hcoh =�
Nr0R

��2�V;H0

�
1��e��2

B

�V;H1

h2
+ F�2 �

V;H

2

g2
+ �2 �

V;H

1

h2

�
: (4.48)

4.3 Other Vacuum Chamber Geometries

The electric and magnetic image coeÆcients have been computed for other geometries

of the vacuum chamber: circular cross section, elliptical cross section [2, 3, 4], and

rectangular cross section [5], and even with the beam o�-centered. The computations

for the rectangular and elliptical cross sections involve one or more than one conformal

mappings and the results are given in terms of elliptical functions.

4.3.1 Circular Vacuum Chamber

The situation of circular cross section with an on-center beam is rather simple. Consider

a line charge of linear density �1 at location x = 0 and y = �y1 inside the cylindric beam

pipe of radius b with in�nitely conducting walls. We place an image line charge of linear

density �2 at location x = 0 and y = �y2 as shown in left plot of Fig. 4.5.
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Figure 4.5: Left plot illustrates a line charge density �1 inside a cylindrical beam

pipe o�set vertically by �y1. There is an image line charge density �2 at �y2 such that

the electric potential vanishes at every point P at the beam pipe. Right plot shows

the combined electric force acting on a witness line charge at (x1; y1).

The electric potential at point P on a chamber wall at an angle � is given by

VP = � e�1
2��0

ln r1 � e�2
2��0

ln r2 ; (4.49)

where (
r21 = �y21 + b2 � 2�y1b cos � ;

r22 = �y22 + b2 � 2�y2b cos � :
(4.50)

Two assertions are made:

�y2 =
b2

�y1
and �2 = ��1 : (4.51)

We obtain from the �rst assertion that r22 = r21(b
2=�y21). Then the second assertion ensures

that the electric potential VP vanishes aside from a constant for any point on the wall

of the cylindrical vacuum chamber.
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To compute the image force, place a witness line charge at x = x1 and y = y1, as

illustrated in the right plot of Fig. 4.5. The electric force exerted on the witness charge

by the image has the y component

F elec
y

e
=

e�1
2��0

b2

�y1
� y1

x21 +

�
b2

�y1
� y1

�2 �!
e�1
2��0

�y1
b2

; (4.52)

where in the last step only terms linear in y1 and �y1 are retained. According to Eq. (4.13),

��Vincoh = � Nr0R

��2�V0

�V1
b2

and ��Vcoh = � Nr0R

��2�V0

�V1
b2

; (4.53)

we immediately obtain the incoherent and coherent electric image coeÆcients for a cir-

cular beam pipe:

�V1 = 0 and �V1 =
1

2
: (4.54)

Because of the cylindrical symmetry, we also have

�H1 = 0 and �H1 =
1

2
: (4.55)

It is not surprising to see the incoherent electric image coeÆcients vanish. This is because

at the point of observation of the witness charge, ~r � ~E = 0, leading to �V1 + �H1 = 0.

4.3.2 Elliptical Vacuum Chamber

4.3.2.1 O�-centered Beam

The elliptical cross section of the vacuum chamber has half width w and half height

h < w. They are also known as the major and minor radii. The focal points are on the

horizontal axis at distance " =
p
w2 � h2 from the center. Consider a line beam on the

horizontal axis at distance x from the center. The image coeÆcients can be obtained by

performing two conformal mappings [2, 3, 4]. The derivations are rather involved. Here,

we only present the results. When the beam is inside the focal pointsy or 0 < x < ",

�V1 = ��H1 =
h2

12W 2

"
A

�
2K

� cn dn

�2

+
6Kk02x sn

�W cn dn
� 4"2 + 5x2

2W 2

#
; (4.56)

yThese expressions are presented from Eqs. (74) to (76) in Ref. [3]. The expression following Eq. (74)

is incorrect that the factor (1 + k2 + k4) in the middle term should have been (1 + 2k2 + k4). The �rst

factor in Eq. (76) after the opening square bracket, (1� k2S2), should have been (1� k2S4).
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�V1 =
h2

4W 2

"�
2K dn

� cn

�2

+
2Kk02x sn

�W cn dn
� "2 + x2

W 2

#
; (4.57)

�H1 = � h2

4W 2

"�
1� k2sn4

�� 2Kk0

� cn dn

�2

+
2Kk02x sn

�W cn dn
� "2 + x2

W 2

#
; (4.58)

where

A =
�
2� k2

�� 1
2

�
1 + k2

�2
sn2 � k2

�
1� 2k2

�
sn4 ; (4.59)

and

W 2 = "2 � x2 = w2 � h2 � x2 : (4.60)

The arguments of the Jacobian elliptic functions sn, cn, dn are�
2K(k)

�
sin�1(x="); k

�
; (4.61)

where K = K(k) is the complete elliptical function of the �rst kind and k is called the

modulusz. The complementary modulus k0 is given by

k0 =
p
1� k2 : (4.62)

We �rst compute the nome, de�ned as

q = exp

�
��K 0(k)

K(k)

�
; (4.63)

using the expression

q =
w � h

w + h
; (4.64)

then the complementary modulus k0 usingx

k0
1

2 =

1 + 2
1X
s=1

(�1)sqs2

1 + 2
1X
s=1

qs
2

; (4.65)

and �nally the modulus k through Eq. (4.62).

zSome authors also de�ne the parameter m = k2 and the complementary parameter m0 = k0
2
= 1�m.

xThis formula was stated wrongly in Eq. (6) of Ref. [5].
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Notice that each term in Eqs. (4.56), (4.57), and (4.58) becomes singular when the

beam approaches the focal points of the elliptic cross section. However, the singularities

cancel each other in each expression to arrive at a �nite value as x! ". For this reason

double precision must be used in evaluating these expressions. Right at the focal points

the image coeÆcients become{

�V1 = ��H1 =
h2

360"2

"�
1� 16k2 + k4

��2K
�

�4

+ 10
�
1 + k2

��2K
�

�2

� 11

#
; (4.66)

�V1 =
h2

180"2

"�
2 + 13k2 + 2k4

��2K
�

�4

+ 5
�
1 + k2

��2K
�

�2

� 7

#
; (4.67)

�H1 =
�h2
180"2

"
2
�
1� 16k2 + k4

��2K
�

�4

+ 5
�
1 + k2

��2K
�

�2

� 7

#
: (4.68)

When the beam is outside the focal points or x > ", the image coeÆcients assume

the formk

�V1 = ��H1 =
h2

12W 2

"
B1

�
2K

� sn cn

�2

+
6Kx dn

�W sn cn
� 4"2 + 5x2

2W 2

#
; (4.69)

�V1 =
h2

4W 2

"�
2K cn

� sn

�2

+
2Kx dn

�W sn cn
� "2 + x2

W 2

#
; (4.70)

�H1 = � h2

4W 2

"
B2

�
2K

� sn cn

�2

+
2Kx dn

�W sn cn
� "2 + x2

W 2

#
; (4.71)

where

B1 =
3
2
� 1

2

�
8� k0

2�
sn2 +

�
1 + k0

2�
sn4 ; B2 = 1� 2 sn2 + k0

2
sn4 : (4.72)

Unlike the situation when the beam is inside the focal points, here

W 2 = x2 � "2 = x2 � w2 + h2 ; (4.73)

{in Ref. [3], in Appendix D(f), the �rst term of �V
1

was
�
2 � 13k2 + 2k4

�
which has a wrong sign

preceding 13k2 as compared with our Eq. (4.67). In Ref. [4], Table II, Part (c), the expression for �1
when x = ", has an overall incorrect sign.

kIn Ref. [3], Appendix D(e), the expressions for �V1 , �
V

1 , and �H1 all have negative signs in front of the

middle terms inside the square brackets. They should be all positive as given by Eqs. (4.69), (4.70),

and (4.71). The expression for B1 in Ref. [3] has the typo that S in the second term on the right side

should have been S2.
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and the Jacobian elliptic functions sn, cn, and dn have arguments�
2K(k)

�
cosh�1(x="); k0

�
: (4.74)

However, the nome q, modulus k, and complementary modulus k0 are the same as given

by Eqs. (4.64), (4.62), and (4.65).

4.3.2.2 Centered Beam

When the beam is right at the center of the vacuum chamber, x = 0. The arguments of

the elliptic functions in Eq. (4.61) simplify to (0; k) and we have sn = 0, cn = dn = 1.

The expressions for the image coeÆcients in Eqs. (4.56), (4.57), and (4.58) simplify

readily to

�V1 = ��H1 =
h2

12"2

"�
1 + k0

2��2K
�

�2

� 2

#
; (4.75)

�V1 =
h2

4"2

"�
2K

�

�2

� 1

#
; (4.76)

�H1 =
h2

4"2

"
1�

�
2Kk0

�

�2
#
: (4.77)

4.3.3 Rectangular Vacuum Chamber

4.3.3.1 O�-Centered Beam

To conform with the elliptical beam pipe, let h and w be, respectively, the half height and

half width of the rectangular cross section��. When the beam is on the horizontal axis

but with fractional o�set g (or at distance gw from the center), the image coeÆcients

areyy

�V1 = ��H1 =
K2(k)

4

�
k04sn2 cn2

2 dn2
� k02(1� 2 sn2)

3
� dn2 (3� 4 sn2 + 4 sn4)

6 sn2 cn2

�
; (4.78)

��Note that in Ref. [5], h and w are the full height and full width of the rectangular cross section.
yyEquation (4.78) was reported in Eq. (53) of Ref. [5] with a wrong sign in front of sn4

10
inside the

last term in the curly brackets.
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�V1 =
K2(k)

4

k04sn2 cn2

dn2
; (4.79)

�H1 =
K2(k)

4

�
k0

2
(1� 2 sn2) +

dn2

sn2 cn2

�
: (4.80)

The arguments of the elliptic functions sn, cn, dn are�
K(k)y0

h
; k0
�
=

�
K(k)w

h
(1� g); k0

�
; (4.81)

where y0 = (1� g)w is the position of the beam measured from one vertical wall of the

vacuum chamber, and K(k) is the complete elliptical function of the �rst kind.

Here, the nome is computed according to

q = e�2�w=h ; (4.82)

which is quite di�erent from the one used in Eq. (4.64) for the elliptical beam pipe.

Next, the complementary modulus k0 can be computed from Eq. (4.65), from which the

modulus k can be obtained via Eq. (4.62).

4.3.3.2 Centered Beam

For a centered beam, g = 0, the arguments of the elliptical functions become�
K(k)w

h
; k0
�
=
�
1
2
K 0(k); k0

�
=
�
1
2
K(k0); k0

�
: (4.83)

Notice that the periods of sn, cn, dn with modulus k0 are 4K(k0). The elliptical functions

simplify to [6]

sn
�
1
2
K(k0); k0

�
=

1p
1 + k

; cn
�
1
2
K(k0); k0

�
=

p
kp

1 + k
; dn

�
1
2
K(k0); k0

�
=
p
k :

(4.84)

The electric image coeÆcients simplify to

�V1 = ��H1 =
K2(k)

12

�
1� 6k + k2

�
; (4.85)

�V1 =
K2(k)

4

�
1� k

�2
; (4.86)

�H1 = K2(k) k ; (4.87)

which involve only the complete elliptical function of the �rst kind.
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4.3.3.3 Comments

1. Since q decreases exponentially as w=h increases, very accurate value of k0 can

be computed with Eq. (4.65). For example, even for 1 � w=h � 0:2, 14-�gure

accuracy can be readily obtained for k0 and also k2 afterward using Eq. (4.62),

when the summations are extended to s = 5. In fact, for centered beam, there is

no need to go to w=h < 1, because we can interchange the role of w and h.

2. When w=k > 1, q becomes very small and k0 is very close to 1. (For example,

k2 = 2:9437� 10�3, 5:5796� 10�5 and 1:0420� 10�7, respectively, when w=h = 1,

2 and 3.) Equation (4.62) can no longer give accurate result for k. To preserve

accuracy, we must expand k2 as power series in q with the aid of Eqs. (4.62) and

(4.65):

k2 = 16q
�
1�8q+44q2�192q3+718q4�2400q5+7352q6�20992q7+56549q8�� � � � ;

(4.88)

from which 14-�gure accuracy can be obtained when w=k � 1.

3. Because k2 � 1 when w=h > 1, Eqs. (4.85), (4.86), and (4.87) can be viewed as

expansions from values for the in�nite horizontal plates. In fact, with

K(k) =
�

2

�
1 +

1

4
k2 +

9

64
k4 +O�k6�� ; (4.89)

we can write

�V1 = ��H1 =
�2

48

�
1� 6k +

3

2
k2 � 3k3 +

27

32
k4 � 33

16
k5 +O�k6�� ; (4.90)

�V1 =
�2

16

�
1� 2k +

3

2
k2 � k3 +

27

32
k4 � 11

16
k5 +O�k6�� ; (4.91)

�H1 =
�2

4
k

�
1 +

1

2
k2 +

11

32
k4 +O�k6�� : (4.92)

4.3.4 Closed Yoke

Mathematically, it is impossible to compute the magnetic image coeÆcients for a closed

cylindrical iron yoke that has in�nite relative permeability. In fact, no solution exists
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for a closed iron yoke of any geometry. This is because Ampere's law requiresI
~H � d~̀= I : (4.93)

For a beam of current I, the component of magnetic �eld ~H along the inner surface of

the iron yoke is therefore nonzero. Thus, the magnetic ux density ~B inside the yoke

becomes in�nite. Speaking in the reverse order, if the magnetic ux density inside the

yoke is �nite, the magnetic �eld ~H along the inner surface must vanish. From Ampere's

law, one gets I = 0, or no current is allowed to ow through the yoke.

For a normal-temperature magnet, we like to operate in the linear region of the

B-H hysteresis curve, for example at Point N in Fig. 4.6, in order to take advantage of

µ   ∼ 1r

µ   ∼ 1000r

S

N

H

B

Figure 4.6: B-H hysteresis plot showing the operation of normal temperature mag-

net at Point N where the relative magnetic permeability �r is large. The operation

of superconducting magnet is at Point S where the iron yoke is at saturation and

�r � 1.

the large relative magnetic permeability, �r � 1000. Then, most of the magnetic ux

density across the pole gap is supplied by �r and only a few percents come from the

winding current. Such operation limits the magnetic ux density to Bmax � 1:8 T. This

explains why the iron yoke is mostly made up of two pieces glued together with some

medium. In that case, ~H will only be large in the medium but relatively small inside

the yoke and a much larger beam current will be allowed.

The story for superconducting magnets is quite di�erent. Here, the magnetic ux

density is mostly supplied by the high winding current, while the iron yoke is always
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saturated. The operation point in the hysteresis curve is now at S of Fig. 4.6 in the large

H region where the local slope is 1. Thus the relative permeability �r becomes close to

1 and is very much less than the linear region of the hysteresis curve. If a closed iron

yoke is used, the maximum beam current allowed by Ampere's law becomes �r � 1000

times larger at operation point S than at operation point N .

When the relative permeability is �nite, the Laplace equation can still be solved

using the image method, provided there is suÆcient symmetry in the geometry. Readers

with interest are referred to, for example, the book by Binns and Lawrenson [7].

In Table 4.2, we tabulate the self-�eld coeÆcients for uniformly charged beams and

image coeÆcients for centroid beams [8].

4.4 Connection with Impedance

In Eq. (4.5), the term proportional to y on the right side is absorbed into the betatron

tune shift so that �V0 becomes �V . The equation becomes

d2y

ds2
+

(�V )2

R2
y =

1

mv2
@hFbeam(y; �y)i

@�y

����
y=0

�y : (4.94)

The coherent force on the right is related to the transverse wake function and therefore

the transverse impedance. The connection can be easily made using Eq. (1.28), which

says
@hFbeam(y; �y)i

@�y

����
y=0

�y =
ieZ?

1 �I�y

C
=

ie2Z?
1 �

2c��y

C
: (4.95)

On the other hand, in Eq. (4.12), according to the the de�nition of the image coeÆcient,

eEV (y; �y)jy=0 =
e2�Z0c

�

�V1 ��V1
h2

�y : (4.96)

As a result, we obtain

Z?
1 = �i Z0C

�2�2

�V1 � �V1
h2

: (4.97)

For a circular beam pipe, �V1 = 1
2
and �V1 = 0. This is just exactly the second half of

the transverse space charge impedance in Eq. (1.38). Thus, the transverse space charge

impedance can be interpreted as the summation of two parts: the part proportional
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Table 4.2: Self-�eld coeÆcients for uniformly charged beam and

image coeÆcients for centered beam.

Coe�. Circular Elliptical Rectangular
Parallel

Plates

�Vspch
1

2

aV
aH + aV

�Hspch
1

2

a2
V

aH(aH + aV )

�V1 0
h2

12"2

�
(1+k

02)

�
2K

�

�2
�2
�

K2(k)

12

�
1� 6k + k2

� �2

48

�H1 0
�h2
12"2

�
(1+k

02)

�
2K

�

�2
�2
� �K2(k)

12

�
1� 6k + k2

� ��2

48

�V2 * * *
�2

24

�H2 * * * ��2

24

�V1
1

2

h2

4"2

��
2K

�

�2
� 1

�
K2(k)

4
(1� k)2

�2

16

�H1
1

2

h2

4"2

�
1�

�
2Kk0

�

�2�
K2(k)k 0

�V2 * * *
�2

16

�H2 * * * 0

* �2 and �2 for closed magnetic boundary (e.g., circular, elliptic, or rectangular) cannot be

calculated when the relative permeability �r!1, since the induced magnetic �eld would

not permit a charged beam to pass through because the �eld energy would become in�nite.

Closed magnetic yokes are used in superconducting magnets, but there the coeÆcients

�2 = �2!0, since the magnetic material is driven completely into saturation (�r ! 1).

K(k) is the complete elliptic integral of the �rst kind. k is determined from (w�h)=(w+

h) = exp(��K 0=K) for the elliptical cross section but w=h = K 0=(2K) for the rectangular

cross section, where w and h are the half width and half height, with " =
p
w2 � h2, and

K 0 = K(k0) with k0 =
p
1� k2.
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to a�2 is the self-�eld contribution and the part proportional to b�2 is the wall image

contribution. We can therefore rewrite the expression in a more general form

ZV;H

1 = i
Z0C

�2�2

�
�V;Hspch

a2
V

� �V;H1 ��V;H1

h2

�
; (4.98)

where h is the half height of the vacuum chamber.

It is important to distinguish the di�erence between the force generating the coher-

ent tune shift and the force generating the transverse impedance. The former involves

the �1 coeÆcient while the later involves �1 � �1. The coherent tune shift is the result

of all forces acting on the center of the beam �y, while the transverse impedance comes

from the force generated by the center motion of the beam on an individual particle. In

other words,

�� / @hFbeam(y; �y)i
@y

����
�y=0

+
@hFbeam(y; �y)i

@�y

����
y=0

;

Z?
1 /

@hFbeam(y; �y)i
@�y

����
y=0

: (4.99)

Thus, the results can be very di�erent. Take the example of a beam between two in�nite

conducting planes. Because of horizontal translational invariance, the horizontal force

acting at the center of the beam vanishes independent of whether the beam is moving

horizontally or vertically. The horizontal coherent tune shift therefore vanishes. How-

ever, the horizontal motion of the center of mass of the beam does provide a horizontal

force on an individual particle, which may not be moving with the center of mass. That

individual particle will therefore see a nonvanishing transverse impedance.

4.5 More about Wake Functions

Most of the time the vacuum chamber is not cylindrical in shape. Thus, the expansion

into circular harmonics in Sec. 1.4 cannot be performed. Here, we want to emphasize

that it is always completely valid to expand ~E and ~B into circular harmonics. However,

when the boundary conditions are applied, ~E and ~B of di�erent circular harmonics will

be mixed together, and so are the wake functions Wm for di�erent m's. In other words,

equations corresponding to an individual m are not independent, thus rendering the

expansion useless. For this reason, we need to give slightly di�erent de�nitions for the

wake functions when there is no cylindrical symmetry.
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Figure 4.7: Test particle with charge q1 at an o�set of a1 from the designated

path leaves wake �elds to the witness particle with charge q2 at an o�set of a2 at a

distance z behind.

Consider a test particle carrying charge q1 traveling with velocity v longitudinally

along a designated path in a vacuum chamber. A witness particle of charge q2 at a

distance z behind along the same path sees a longitudinal force F k
0 and a transverse

force F?
0 due to the wake �elds of the test particle. In general, these forces depend

also on the location s of the test particle along the beam pipe. However, when we

apply the impulse approximation, these forces are integrated over s for a long length

` of the beam pipe and become functions of z only. For a circular machine, ` is taken

as the circumference C. Unlike the situation of traveling along the symmetry axis of

a cylindrical beam pipe, here there is always an average transverse force hF?
0 i. This

transverse force comes mostly from the images in the walls of the vacuum chamber. It

should be weak in general and can therefore be incorporated into the betatron tunes as

tune shifts in the way discussed above in Sec. 4.1.

The longitudinal wake function is de�ned as

W 0
0(z) = �hF

k
0 i`

q1q2
; (4.100)

where hF k
0 i` denotes the longitudinal integrated wake force or impulse.

If the path of the source particle is displaced transversely by a1 from the designated

path as in Fig. 4.7, the witness particle displaced by a2 at a distance z behind will see

a longitudinal force F
k
1 and a transverse force F?

1 . The transverse wake function is now

de�ned by

W1(z) = � lim
a1;a2!0

(hF?
1 i � hF?

0 i)`
a1q1q2

; (4.101)

where the transverse force along the designated path hF?
0 i has been subtracted away
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because it has been taken care of already as tune shifts. De�ned in this way, W 0
0(z)

and W1(z) will be the same as the m = 0 longitudinal wake function and the m = 1

transverse wake function de�ned in Chapter 1.
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4.6 Exercises

4.1. Consider a beam with bi-parabolic or semi-circular distribution

�(r) =
2e�

�r̂2

�
1� r2

r̂2

�
; (4.102)

where r̂ is the radial extent of the beam and � is the linear particle density.

(1) Compute the self-�eld or space charge incoherent tune shift at the center of

the beam where it is maximal and show that the space charge coeÆcient de�ned

in Eq. (4.25) is �spch = 1.

(2) Explain how one can understand that �spch for this distribution is in between

�spch =
1
2
for uniform distribution and �spch � 3

2
for bi-Gaussian distribution.

4.2. The horizontal betatron tune shift due to a quadrupole gradient error �k(s) =

�B0
V =(B�) at location s along the accelerator ring is

���H =
1

4�

Z C

0

�H(s)�k(s)ds ; (4.103)

where �H is the betatron function, C is the circumference of the ring, �B0
V
is the

vertical quadrupole gradient error, and (B�) is the magnetic rigidity. Consider

the space charge self-force as a quadrupole gradient error, derive, using the above

formula, the incoherent dipole space charge tune shift, Eq. (4.24), inside a beam

of uniform transverse distribution.

4.3. Consider a beam with elliptic cross section and uniform particle distribution.

(1) Show that the electric potential

V (x; y) = � e�

2��0

1

aH + aV

�
x2

aH
+

y2

aV

�
(4.104)

for x2=a2
H
+ y2=a2

V
< 1 and 0 otherwise, satis�es the Laplace equation

r2V (x; y) = � e�

��0aHaV
; (4.105)

where � is the linear particle density of the beam.

(2) Show that inside the beam, the transverse electric �elds are

Ex =
e�

��0

x

aH(aH + aV )
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Ex =
e�

��0

y

aV (aH + aV )
(4.106)

(3) Comparing with the electric �eld components inside a cylindrically symmetric

beam of radius a, show that the space charge tune shift coeÆcients, de�ned in

Eq. (4.25), inside this beam of elliptic cross section are

�Hspch =
a2
V

aH(aH + aV )
and �Vspch =

aV
aH + aV

: (4.107)

4.4. We are going to derive the electric potential V (x; y; z) for a 3-dimensional charge

distribution,

�(x; y; z) =
eN

(2�)3=2�x�y�z
exp

�
� x2

2�2
x

� y2

2�2
y

� z2

2�2
z

�
; (4.108)

following the method of Takayama [9], where N is the total number of particles.

(1) Show that the Green function of the Laplace equation can be written as

G(~r; ~�) =
1

4�j~r � ~�j
=

1

2�3=2

Z 1

0

dq e�j~r � ~�j2q2 : (4.109)

In other words, G(~r; ~�) satis�es

r2G(~r; ~�) = �Æ(~r � ~�) : (4.110)

(2) Changing the variable of integration to t = q�2, show that the electric potential

can be written as

V (x; y; z) =
1

4�3=2�0

Z 1

0

dt

t3=2

Z 1

�1

d~� �(~�)e�j~r � ~�j2=t : (4.111)

(3) With � given by Eq. (4.108), derive the electric potential

V (x; y; z) =
eN

4�3=2�0

Z 1

0

dt
exp

h
� x2

(2�2x+t)
� y2

(2�2y+t)
� z2

(2�2z+t)

i
q
(2�2

x + t)(2�2
y + t)(2�2

z + t)
: (4.112)

4.5. Consider a beam with bi-Gaussian transverse charge distribution,

�(x; y) =
e�

2��x�y
exp

�
� x2

2�2
x

� y2

2�2
y

�
; (4.113)
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where �x and �y are the rms width and height, and � is the linear particle density.

(1) From Eq. (4.112), show that the electric potential is

V (x; y) =
e�

4��0

Z 1

0

dt
exp

h
� x2

(2�2x+t)
� y2

(2�2y+t)

i
q
(2�2

x + t)(2�2
y + t)

: (4.114)

(2) Show that the transverse electric �elds are

Ex =
e�x

4��0

Z 1

0

dt
exp

h
� x2

(2�2x+t)
� y2

(2�2y+t)

i
(2�2

x + t)
q
(2�2

x + t)(2�2
y + t)

;

Ey ! Ex with x! y; y ! x : (4.115)

(3) The self-�eld or space charge tune shifts are at their maxima at the center of

the beam, or x! 0 and y ! 0. Show that they are given by Eq (4.33) with

�2 ! �x(�x + �y)

2
for ��Hspch incoh

�2 ! �y(�x + �y)

2
for ��Vspch incoh :

(4.116)

4.6. Derive the lowest order space charge self-force coeÆcient �spch of a particle with

betatron amplitude r inside a cylindrical symmetric coasting beam with transverse

bi-Gaussian distribution.

Answer: �spch = 1
2
f(r=�r) where �r is the rms beam radius and the form factor

f(r=�r) is given by Eq. (4.38).



Bibliography

[1] L.J. Laslett, Proceedings of 1963 summer Study on Storage Rings, BNL-Report

7534, p. 324; L.J. Laslett and L. Resegotti, Proceedings of VIth Int. Conf. on High

Energy Accelerators, Cambridge, MA, 1967, p. 150.

[2] B. Zotter, CERN Reports ISR-TH/72-8 (1972); IST-TH/74-38 (1974); ISR-TH/75-

17 (1975); Proceedings of VIth National particle Accelerator Conf., Washington

DC, 1974 (IEEE, 1975).

[3] B. Zotter, Nucl. Instru. Meth. 129, 377 (1975).

[4] B. Zotter, CERN Report ISR-TH/74-11 (1974).

[5] K.Y. Ng, Particle Accelerators 16, 63 (1984).

[6] See, for example, Table 16.5, p.571 of Abramowitz and Stegun, Handbook of Math-

ematical Functions, Dover, 1965.

[7] K.J. Binns and P.J. Lawrenson, Analysis and Computation of Electric and Magnetic

Field Problems, 2nd Ed., Pergamon Press, 1973.

[8] G. Guignard, CERN 77-10 (1977).

[9] K. Takayama, Lett. Al Nuovo Cimento 34, 190 (1982).

4-37



4-38 BIBLIOGRAPHY


